首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   562篇
  免费   47篇
  2021年   12篇
  2020年   4篇
  2019年   6篇
  2018年   7篇
  2017年   8篇
  2016年   14篇
  2015年   29篇
  2014年   22篇
  2013年   35篇
  2012年   32篇
  2011年   29篇
  2010年   20篇
  2009年   14篇
  2008年   26篇
  2007年   22篇
  2006年   9篇
  2005年   13篇
  2004年   15篇
  2003年   15篇
  2002年   7篇
  2001年   12篇
  2000年   9篇
  1999年   13篇
  1998年   8篇
  1997年   5篇
  1996年   7篇
  1995年   7篇
  1994年   5篇
  1993年   6篇
  1992年   7篇
  1991年   5篇
  1990年   6篇
  1989年   10篇
  1988年   7篇
  1987年   10篇
  1986年   10篇
  1985年   8篇
  1984年   6篇
  1983年   7篇
  1982年   10篇
  1981年   9篇
  1979年   16篇
  1978年   13篇
  1977年   8篇
  1976年   3篇
  1975年   8篇
  1974年   15篇
  1973年   8篇
  1972年   3篇
  1968年   3篇
排序方式: 共有609条查询结果,搜索用时 15 毫秒
91.
Design principles of biochemical oscillators   总被引:1,自引:0,他引:1  
Cellular rhythms are generated by complex interactions among genes, proteins and metabolites. They are used to control every aspect of cell physiology, from signalling, motility and development to growth, division and death. We consider specific examples of oscillatory processes and discuss four general requirements for biochemical oscillations: negative feedback, time delay, sufficient 'nonlinearity' of the reaction kinetics and proper balancing of the timescales of opposing chemical reactions. Positive feedback is one mechanism to delay the negative-feedback signal. Biological oscillators can be classified according to the topology of the positive- and negative-feedback loops in the underlying regulatory mechanism.  相似文献   
92.
Progression of a cell through the division cycle is tightly controlled at different steps to ensure the integrity of genome replication and partitioning to daughter cells. From published experimental evidence, we propose a molecular mechanism for control of the cell division cycle in Caulobacter crescentus. The mechanism, which is based on the synthesis and degradation of three “master regulator” proteins (CtrA, GcrA, and DnaA), is converted into a quantitative model, in order to study the temporal dynamics of these and other cell cycle proteins. The model accounts for important details of the physiology, biochemistry, and genetics of cell cycle control in stalked C. crescentus cell. It reproduces protein time courses in wild-type cells, mimics correctly the phenotypes of many mutant strains, and predicts the phenotypes of currently uncharacterized mutants. Since many of the proteins involved in regulating the cell cycle of C. crescentus are conserved among many genera of α-proteobacteria, the proposed mechanism may be applicable to other species of importance in agriculture and medicine.  相似文献   
93.
beta-2-Microglobulin (beta2m) is deposited as amyloid fibrils in the bones and joints of patients undergoing long-term dialysis treatment as a result of kidney failure. Previous work has shown that biologically relevant amounts of Cu(II) can cause beta2m to be converted to amyloid fibrils under physiological conditions in vitro. In this work, dynamic light scattering, mass spectrometry, and size-exclusion chromatography are used to characterize the role that Cu plays in the formation of oligomeric intermediates that precede fibril formation. Cu(II) is found to be necessary for the stability of the dimer and an initial form of the tetramer. The initially formed tetramer then undergoes a structural change to a state that no longer binds Cu(II) before progressing to a hexameric state. Based on these results, we propose that the lag phase associated with beta2m fibril formation is partially accounted for by the structural transition of the tetramer that results in Cu(II) loss. Consistent with this observation is the determination that the mature beta2m amyloid fibrils do not contain Cu. Thus, Cu(II) appears to play a catalytic role by enabling the organization of the necessary oligomeric intermediates that precede beta2m amyloid formation.  相似文献   
94.
95.
Through four spatially explicit models, we investigate how habitat fragmentation affects cyclic predator–prey population dynamics. We use a Partial Differential Equation (PDE) framework to describe the dispersal of predators and prey in a heterogeneous landscape made of high quality and low quality habitat patches, subject to increasing fragmentation through habitat separation and/or habitat loss. Our results show that habitat fragmentation decreases the amplitude of the predator–prey population cycles while average population density is not as strongly affected in general. Beyond these simple trends however, the four models show differing responses to fragmentation, indicating that when making predictions about population survival and persistence in the face of habitat fragmentation, the choice of model is important. Our results may inform conservation efforts in fragmented habitats for cyclic species such as the snowshoe hare and Canada lynx. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorised users.  相似文献   
96.
Mathematical models of the snowshoe hare (Lepus americanus) and Canada lynx (Lynx canadensis) population cycles in the boreal forest have largely focused on the interaction between a single specialist predator and its prey. Here, we consider the role that other hare predators play in shaping the cycles, using a predator–prey model for up to three separate specialist predators. We consider the Canada lynx, coyote (Canis latrans) and great horned owl (Bubo virginianus). Our model improves on past modelling efforts in two ways: (1) our model solutions more closely represent the boreal hare and predator cycles with respect to the cycle period, maximum and minimum hare densities and maximum and minimum predator densities for each predator, and (2) our model sheds light on the role each specialist plays in regulation of the hare cycle, in particular, the dynamics of the raptor appear to be crucial for characterising the low hare densities correctly.  相似文献   
97.
Guanine nucleotide exchange factor proteins of the Tiam family are activators of the Rho GTPase Rac1 and critical for cell morphology, adhesion, migration, and polarity. These proteins are modular and contain a variety of interaction domains, including a single post-synaptic density-95/discs large/zonula occludens-1 (PDZ) domain. Previous studies suggest that the specificities of the Tiam1 and Tiam2 PDZ domains are distinct. Here, we sought to conclusively define these specificities and determine their molecular origin. Using a combinatorial peptide library, we identified a consensus binding sequence for each PDZ domain. Analysis of these consensus sequences and binding assays with peptides derived from native proteins indicated that these two PDZ domains have overlapping but distinct specificities. We also identified residues in two regions (S(0) and S(-2) pockets) of the Tiam1 PDZ domain that are important determinants of ligand specificity. Site-directed mutagenesis of four nonconserved residues in these two regions along with peptide binding analyses confirmed that these residues are crucial for ligand affinity and specificity. Furthermore, double mutant cycle analysis of each region revealed energetic couplings that were dependent on the ligand being investigated. Remarkably, a Tiam1 PDZ domain quadruple mutant had the same specificity as the Tiam2 PDZ domain. Finally, analysis of Tiam family PDZ domain sequences indicated that the PDZ domains segregate into four distinct families based on the residues studied here. Collectively, our data suggest that Tiam family proteins have highly evolved PDZ domain-ligand interfaces with distinct specificities and that they have disparate PDZ domain-dependent biological functions.  相似文献   
98.
Protein sulfonation on serine and threonine residues is described for the first time. This post-translational modification is shown to occur in proteins isolated from organisms representing a broad span of eukaryote evolution, including the invertebrate mollusk Lymnaea stagnalis, the unicellular malaria parasite Plasmodium falciparum, and humans. Detection and structural characterization of this novel post-translational modification was carried out using liquid chromatography coupled to electrospray tandem mass spectrometry on proteins including a neuronal intermediate filament and a myosin light chain from the snail, a cathepsin-C-like enzyme from the parasite, and the cytoplasmic domain of the human orphan receptor tyrosine kinase Ror-2. These findings suggest that sulfonation of serine and threonine may be involved in multiple functions including protein assembly and signal transduction.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号